在本地运行 Code Autopilot

浏览量:1,328

简单整理一下如何使用continue扩展配合ollama让VS Code支持本地运行的LLM实现AI代码补全

Requirements

  • Ollama.ai
  • continue.dev

在本地准备LLM运行环境

Install Ollama

On the Mac

下载 ollama app https://ollama.com/download 运行即可

On Linux / WSL

CPU Only
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
Nvidia GPU

安装 Nvidia container toolkit
Run Ollama inside a Docker container

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

Install LLM Model

这里安装 starcoder:3b

Mac

ollama run starcoder:3b

Docker

docker exec -it ollama ollama run starcoder:3b

确保模型下载完成,并成功启动

在VSCode安装 continue 扩展

VSCode Extension https://marketplace.visualstudio.com/items?itemName=Continue.continue

配置Tab自动补全

在VS Code扩展安装后,进入"Settings" 点击箭头编辑settings.json

在JSON配置中增加 tab auto complete 配置

{
...
    "tabAutocompleteModel": {
        "title": "Tab Autocomplete Model",
        "provider": "ollama",
        "model": "starcoder:3b",
        "apiBase": "https://127.0.0.1:11434" // ollama api endpoint
    },

    "tabAutocompleteOptions": {
        "useCopyBuffer": false, //Determines whether the copy buffer will be considered when constructing the prompt. (Boolean)
        "maxPromptTokens": 400, //The maximum number of prompt tokens to use. A smaller number will yield faster completions, but less context. (Number)
        "prefixPercentage": 0.5 // The percentage of the input that should be dedicated to the prefix. (Number)
    },
    "continue.enableTabAutocomplete": true
}

测试

使用VS Code新建一个Python,这里我们添加一个注释来获得城市天气并输出JSON

出现预览后可敲击Tab补全

除了starcoder-3b外,还可以选择 starcoder-1b 或者 deepseek-1b 这种更小的模型以提升速度。

留下评论